16

Материал из Demopædia
Перейти к: навигация, поиск


60px Avertissement : Cette page n'a pas encore fait l'objet d'une vérification fine. Tant que ce bandeau persistera, prière de la considérer comme temporaire.

Prière de regarder la page de discussion relative à cette page pour d'éventuels détails.

This page is still the unmodified first edition of the Multilingual Demographic Dictionary
Please suppress this warning if you modify it
Введение | Вступление | Указатель
Лава | Общие положения (Указатель 1) | Обработка демографических данных (Указатель 2) | Состав и размещение населения (Указатель 3) | Смертность и заболеваемость (Указатель 4) | Брачность (Указатель 5) | Плодовитость (Указатель 6) | Естественное движение и воспроизводство населения (Указатель 7) | Миграция (Указатель 8) | Экономическая и социальная демография (Указатель 9)
Раздел | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 20 | 21 | 22 | 23 | 30 | 31 | 32 | 33 | 34 | 35 | 40 | 41 | 42 | 43 | 50 | 51 | 52 | 60 | 61 | 62 | 63 | 70 | 71 | 72 | 80 | 81 | 90 | 91 | 92 | 93

16

160

Выборочным методом 1 называется способ статистического наблюдения, при котором для определения характеристик генеральной совокупности (101-2) изучаются не все единицы совокупности, а лишь некоторая их часть, называемая выборочной совокупностью 2. Единицы, на основе которых строится выборка, называются единицами выборки 4 или единицами отбора 4. Единицей выборки может быть простейшая единица 3, группа или скопление таких простейших единиц. Единицей выборки может быть, например, городской квартал, хотя простейшей единицей, с которой статистик непосредственно соприкасается, может быть отдельный человек (110-2), семья (112-1) или хозяйство (110-3). Выборкой 2 называется совокупность единиц выборки, отобранных таким образом, чтобы выводы, которые делаются на основе изучения этих единиц, были репрезентативными в отношении генеральной совокупности. Отбор единиц из данной генеральной совокупности производится в соответствии с намеченным планом выборки 5.

  • 1. Выборочное наблюдение различают по способу отбора единиц наблюдения. При типологическом отборе изучаемая совокупность предварительно разбивается на типические группы и в пределах этих групп производится механический или случайный отбор. Механический отбор состоит в том, что единицы наблюдения отбирают в определенном численном порядке. Случайным отбором называется такой отбор, когда все единицы совокупности имеют равные шансы попасть в выборку.

161

Основная задача теории выборочного метода (160-1) состоит в осуществлении такой случайной выборки 1, при которой вероятность попадания в выборку каждой единицы совокупности является величиной известной. Необходимым инструментарием 3 для проведения выборочного обследования служат списки, карты или адресные книги, содержащие перечисление всех единиц совокупности, из которой производится выборка. Простейшим методом получения случайной выборки является простой случайный отбор 4, который состоит в том, что обследуемые единицы отбираются из всей совокупности путем жереббевки 2. Соотношение численности выборочной и генеральной совокупности называется долей выборки в генеральной совокупности 5. Механическая выборка 6 состоит в том, что обследуемые единицы отбираются в определенной последовательности. Так, например, при отборе первой, шестой, одиннадцатой и т.д. единиц получают двадцатипроцентную выборку; при отборе первой, одиннадцатой, двадцать первой и т.д. — десятипроцентную выборку; при отборе первой, двадцать первой, сорок первой и т.д. — пятипроцентную выборку. Единицей отбора (160-4) может быть гнездо 8 простейших единиц, которое затем расчленяется на отдельные единицы, признаки которых являются предметом изучения. Такой способ выборки называется гнездовым отбором 7 или групповым методом выборки 7.

162

При типологической выборке 1 изучаемую массу расчленяют предварительно на отдельные, более однородные типы 2 или группы 2, а затем внутри этих групп производят отбор в случайном или ином порядке, причем доли выборки в генеральной совокупности (161-5) для отдельных групп могут быть разными. При многоступенчатой выборке 3 процесс выборки состоит из нескольких стадий. Сначала производится отбор первичных единиц выборки, затем из выборочной совокупности последовательно производятся повторные отборы 4. При территориальной выборке 5 единицы наблюдения рассматриваются в связи с территорией, причем выборка территории производится методом случайного отбора.

  • 1. Употребляется также термин стратифицированная случайная выборка.
  • 3. Последующие операции в многоступенчатой выборке определяют порядок отбора единиц выборки из различных типов на разных стадиях. В тех случаях, когда единицы выборки одного и того же типа являются объектом различных фаз наблюдения, применяется термин многофазная выборка.
  • 4. В случае двухступенчатой выборки производится второй отбор, в случае трехступенчатой выборки — третий отбор.

163

Выборочная совокупность (160-2) должна быть репрезентативной, т.е. она должна правильно отображать генеральную совокупность в отношении изучаемых признаков. Для получения репрезентативной выборки 1 необходимо, чтобы отбор отдельных единиц производился строго объективно и чтобы число включенных в выборку единиц было достаточно велико. По закону больших чисел достаточно обширная выборка будет репрезентативной, если ее производить случайно. Однако, если обследуемая совокупность, по имеющимся заранее данным, может быть разбита на группы известного объема, обдадающие с точки зрения изучаемого признака большей однородностью, чем все группы, то выгодно заранее установить, сколько единиц из каждой группы включается в выборку не случайным, а заранее обдуманным образом, причем проще всего это может быть сделано пропорционально объему группы. Такая выборка называется типической пропорциональной выборкой 2 А В этом случае регистраторам заранее указывается, какая доля 3 обследуемого контингента должна быть включена в выборочную совокупность.

164

Показатели, полученные на основании выборки, называют выборочными характеристиками. Эти характеристики используются в качестве основы для расчета соответствующих характеристик генеральной совокупности, из которой они взяты. Показатели, определяющие свойства такой совокупности, называются параметрами 1. Расчет параметров с помощью выборочных данных носит название статистической оценки 2. Точность таких оценок зависит от ошибок выборки 3, величина которых может быть приблизительно определена на основе средних ошибок 4 или стандартных ошибок 4. Наиболшая вероятность, с которой оценка параметров — или, вообще говоря, какое-либо статистическое правило — может дать ошибочный результат, называется уровнем значимости 7. Под термином доверительные границы 5 понимают соответствующий данному уровню значимости интервал распределения вероятностей. От выбора уровня значимости зависит также значимая разность 6 между соответствующими величинами, полученными для двух выборок, взятых по признаку случайности из одной и той же совокупности.

  • 1. Согласно существующему правилу, выборочные показатели обозначаются латинскими буквами, а параметры — греческими.
  • 7. В практическом применении термин уровень значимости означает вероятность, которой решено пренебрегать в данном исследовании. При обычных расчетах эту вероятность выбирают в пределах от 0,01 до 0,05.


* * *

Введение | Вступление | Указатель
Лава | Общие положения (Указатель 1) | Обработка демографических данных (Указатель 2) | Состав и размещение населения (Указатель 3) | Смертность и заболеваемость (Указатель 4) | Брачность (Указатель 5) | Плодовитость (Указатель 6) | Естественное движение и воспроизводство населения (Указатель 7) | Миграция (Указатель 8) | Экономическая и социальная демография (Указатель 9)
Раздел | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 20 | 21 | 22 | 23 | 30 | 31 | 32 | 33 | 34 | 35 | 40 | 41 | 42 | 43 | 50 | 51 | 52 | 60 | 61 | 62 | 63 | 70 | 71 | 72 | 80 | 81 | 90 | 91 | 92 | 93